

Falownik hybrydowy Solis serii RHI

(RHI-3P(5-10)K-HVES-5G) Instrukcja obsługi

Wersja **1.2**

Ginlong Technologies Co., Ltd. No. 57 Jintong Road, Binhai Industrial Park, Xiangshan, Ningbo, Zhejiang, 315712, P.R.China. Tel.: +86 (0) 574 6578 1806 Faks: +86 (0)574 6578 1606 Email:info@ginlong.com Web:www.ginlong.com

W przypadku jakichkolwiek rozbieżności w niniejszej instrukcji należy odnosić się do rzeczywistych urządzeń. Jeśli napotkasz jakiekolwiek problemy z falownikiem, sprawdź numer seryjny falownika i skontaktuj się z nami, postaramy się jak najszybciej odpowiedzieć na Twoje pytanie.

Ginlong Technologies Co., Ltd.

1. Wstęp	2
1.1 Opis produktu	2
1.2 Opakowanie	4
2. Bezpieczeństwo i ostrzeżenie	4
2.1 Bezpieczeństwo	4
2.2 Ogólne wskazówki dotyczące bezpieczeństwa	6
2.3 Uwaga dotycząca użytkowania	7
3. Ogólny opis	7
3.1 Ekran	7
3.2 Klawiatura	7
3.3 Połączenie zacisku	7
4. Instalacja	8
4.1 Wybierz lokalizację dla falownika	8
4.2 Montaż falownika	10
4.3 Zespół zacisków wejściowych PV	11
4.4 Elementy zacisków akumulatora	12
4.5 Montaż złącza AC	13
4.6 Instalacja miernika	15
4.7 Zespół kabla komunikacyjnego	16
4.8 Połączenie interfejsu logicznego (tylko dla Wielkiej Brytanii)	17
4.9 Dioda LED wskazuje	18
5. Obsługa	19
5.1 Menu główne	19
5.2 Informacja	20
5.3 Ustawienia	
5.4 Informacje zaawansowane	
5.5 Ustawienia zaawansowane	
6. Przekazanie do eksploatacji	
6.1 Przygotowanie do uruchomienia	
6.2 Procedura rozruchu	
7. Rozwiązywanie problemów	
8. Konserwacja	42

1. Wstęp

1.1 Opis produktu

Seria Solis RHI jest przeznaczona do mieszkaniowych systemów hybrydowych, które mogą współpracować z akumulatorami w celu optymalizacji zużycia własnego. Urządzenie może pracować zarówno w trybie off-grid, jak i on-grid. Seria Solis RHI obejmuje 4 różne modele:

RHI-3P5K-HVES-5G, RHI-3P6K-HVES-5G, RHI-3P8K-HVES-5G, RHI-3P10K-HVES-5G

1.2 Opakowanie

Upewnij się, że następujące elementy znajdują się w opakowaniu z maszyną:

Jeśli stwierdzasz brak jakiegoś elementu, skontaktuj się z lokalnym dystrybutorem firmy Solis.

2.Bezpieczeństwo i ostrzeżenie

2.1 Bezpieczeństwo

Następujące typy instrukcji bezpieczeństwa i informacji ogólnych pojawiają się w tym dokumencie jako

te opisane poniżej:

NIEBEZPIECZEŃSTWO:

"Niebezpieczeństwo", wskazuje potencjalnie niebezpieczna sytuacje, która, jeśli jej nie zapobiegniemy, będzie skutkować śmiercią lub poważnymi obrażeniami.

OSTRZEŻENIE:

"Ostrzeżenie", wskazuje potencjalnie niebezpieczną sytuację, która, jeśli jej nie zapobiegniemy, mogłaby skutkować śmiercią lub poważnymi obrażeniami.

PRZESTROGA:

"Przestroga" to wskazanie niebezpiecznej sytuacji, której skutkiem mogą być drobne lub umiarkowane obrażenia.

UWAGA:

"Uwaga" zawiera cenne wskazówki dotyczące optymalnego działania produktu.

2.2 Ogólne wskazówki dotyczące bezpieczeństwa

OSTRZEŻENIE:

Tylko urządzenia zgodne z przepisami SELV (EN 69050) mogą być podłączone do interfejsów RS485 i USB.

OSTRZEŻENIE:

Nie podłączaj dodatniego (+) ani ujemnego (-) zacisku systemu fotowoltaicznego do uziemienia, może to spowodować poważne uszkodzenie falownika.

OSTRZEŻENIE:

Instalacje elektryczne muszą być wykonane zgodnie z lokalnymi i krajowymi normami bezpieczeństwa elektrycznego.

OSTRZEŻENIE:

Nie dotykaj żadnych wewnętrznych części pod napięciem przed upływem 5 minut po rozłączeniu sieci elektroenergetycznej i wejścia panelu fotowoltaicznego.

OSTRZEŻENIE:

Aby zmniejszyć ryzyko pożaru w obwodach podłączonych do falownika, wymagane jest zainstalowanie zabezpieczeń nadprądowych (OCPD).

Zabezpieczenia nadprądowe prądu stałego (DC OCPD) należy zainstalować z przestrzeganiem lokalnych przepisów. Wszystkie przewody obwodów wejściowych i wyjściowych panelu fotowoltaicznego powinny mieć odłączniki zgodne z art. 690 część II NEC. Wszystkie falowniki jednofazowe firmy Solis posiadają wbudowany przełącznik prądu stałego.

PRZESTROGA:

Ryzyko porażenia prądem, nie zdejmować osłony. Wewnątrz nie ma części, które mogą być naprawiane przez użytkownika. Konserwację należy powierzyć wykwalifikowanym i akredytowanym technikom serwisu.

PRZESTROGA:

System fotowoltaiczny dostarcza napięcie stałe, gdy jest on wystawiony na działanie promieni słonecznych.

PRZESTROGA:

Ryzyko porażenia prądem elektrycznym z powodu energii zgromadzonej w kondensatorach falownika, nie zdeimować obudowy przez 5 minut po odłaczeniu wszystkich źródeł zasilania (tylko dla serwisanta). Gwarancja może zostać unieważniona, jeżeli osłona zostanie zdjęta przez osobę nieupoważnioną.

PRZESTROGA:

Temperatura powierzchni falownika moż e dochodzić do 75° C (167°F). Aby uniknać ryzyka poparzenia, nie dotykaj powierzchni działającego falownika. Falownik musi zostać zainstalowany poza zasięgiem dzieci.

UWAGA:

Moduł fotowoltaiczny używany z falownikiem musi mieć klasę A. IEC 61730.

OSTRZEŻENIE:

Poniższe czynności muszą być wykonywane przez licencjonowanego technika lub osobe upoważniona przez Solis.

OSTRZEŻENIE:

Operator musi nosić rękawice techniczne podczas całego procesu na wypadek jakiegokolwiek zagrożenia elektrycznego.

OSTRZEŻENIE:

Zabronione jest podłączanie do sieci AC-BACKUP serii RHI

2. Bezpieczeństwo i ostrzeżenie

Przed konfiguracją zapoznaj się ze specyfikacją akumulatora.

2.3 Uwaga dotycząca użytkowania

Falownik został skonstruowany zgodnie z obowiązującymi wytycznymi bezpieczeństwa i wskazówkami technicznymi. Falownika należy używać WYŁĄCZNIE w instalacjach charakteryzujących się następującymi danymi technicznymi:

- 1. Wymagana jest stała instalacja.
- 2. Instalacja elektryczna musi spełniać wymogi wszystkich obowiązujących przepisów i norm.
- 3. Falownik należy zainstalować zgodnie ze wskazówkami zamieszczonymi w niniejszej instrukcji.
- 4. Falownik należy zainstalować zgodnie z odpowiednimi specyfikacjami technicznymi.

3.1 Ekran

Seria Solis RHI posiada ekran LCD, który wyświetla stan, informacje operacyjne i ustawienia falownika.

3.2 Klawiatura

Na przednim panelu falownika znajdują się cztery klawisze (od strony lewej do prawej): klawisze ESC, W GÓRĘ, W DÓŁ i ENTER. Klawiatura służy do:

- przewijania wyświetlanych opcji (klawisze W GÓRĘ i W DÓŁ); udostępniania
- modyfikacji regulowanych ustawień (klawisze ESC i ENTER).

Rysunek 3.2 Klawiatura

3.3 Połączenie terminala

Falownik firmy Solis z serii RHI różni się od zwykłego falownika sieciowego, przed rozpoczęciem podłączania zapoznaj się z poniższymi instrukcjami.

OSTRZEŻENIE:

Przed konfiguracją zapoznaj się ze specyfikacją akumulatora.

4.1 Wybór lokalizacji dla falownika

Aby wybrać lokalizację falownika, należy wziąć pod uwagę następujące kryteria:

- narażenie na bezpośrednie działanie promieni słonecznych może spowodować obniżenie mocy
- wyjściowej. Zaleca się unikanie instalowania falownika w bezpośrednim świetle słonecznym.
- Zaleca się, aby falownik był zainstalowany w chłodniejszym otoczeniu, które nie przekracza 104F/40C.

OSTRZEŻENIE: Ryzyko pożaru

Pomimo przemyślanej konstrukcji urządzenia elektryczne mogą stać się przyczyną pożaru.

- Nie instaluj falownika w obszarach zawierających łatwopalne materiały lub gazy.
- Nie instaluj falownika w przestrzeniach zagrożonych wybuchem.

- Instaluj na ścianie lub mocnej konstrukcji, która jest w stanie utrzymać ciężar maszyny (24 kg). Instaluj
- pionowo z maksymalnym nachyleniem +/- 5 stopni, przekroczenie tego może spowodować obniżenie mocy wyjściowej.
- Aby uniknąć przegrzania falownika, zawsze upewnij się, że nic nie zakłóca przepływu powietrza wokó niego. Należy zachować minimalny odstęp 500 mm między falownikami lub obiektami oraz 500 mm odstępu między dolną częścią urządzenia a podłożem.

- Należy wziąć pod uwagę widoczność diod LED i wyświetlacza LCD.
- Należy zapewnić odpowiednią wentylację.

UWAGA:

Nie wolno przechowywać ani umieszczać na falowniku żadnych przedmiotów.

4.2 Montaż falownika

Wymiary wspornika montażowego:

Po znalezieniu odpowiedniego miejsca zgodnie z 4.1 i na podstawie rysunków 4.3 oraz 4.4 zamontuj wspornik ścienny na ścianie.

Falownik należy zamontować w pozycji pionowej.

Poniżej opisano etapy montażu falownika:

1. Ustal wysokość montażu wspornika i zaznacz otwory montażowe.

W przypadku ścian z cegły otwory powinny się znajdować w miejscach umożliwiających zastosowanie kołków rozporowych.

 Podnieś falownik (uwzględnij jego wagę) i wyrównaj tylny wspornik falownika z wypukłą częścią wspornika montażowego. Zawieś falownik na wsporniku montażowym i upewnij się, że jest on dobrze zamocowany (patrz: Rysunek 4.5)

4.3 Zespół zacisków wejściowych PV

Przed podłączeniem falownika upewnij się, że:

- Upewnij się, że napięcie łańcucha paneli fotowoltaicznych nie przekroczy maksymalnego napięcia wejściowego DC (1000 V DC). Naruszenie tego warunku spowoduje unieważnienie gwarancji.
- Upewnij się, że polaryzacja złączy PV jest prawidłowa.
- Upewnij się, że wyłącznik DC, akumulator, AC-BACKUP i AC-Grid są wyłączone. Upewnij się, że
- rezystancja PV do uziemienia jest wyższa niż 20 kiloomów.

Falownik Solis z serii RHI wykorzystuje złącza MC4. Postępuj zgodnie z ilustracją poniżej, aby zamontować złącza MC4.

Wymagania dotyczą ce przekroju przewodu PV: 2,5~4 $\rm mm^2$.

4.4 Elementy zacisków akumulatora

Szybkozłączka służy do podłączenia akumulatora. Złącze nadaje się do kabli cynowanych o przekroju żyły 2.5-6 mm2 (AWG14-10).

Zakres średnicy zewnętrznej kabla akumulatora: 5,5 mm - 8,0 mm.

UWAGA:

Do wykonania połączenia potrzebny jest śrubokręt z ostrzem i końcówką o szerokości 3 mm.

Krok 1. Zdejmij 15 mm z przewodu za pomocą odpowiedniego narzędzia do ściągania izolacji.

Krok 2. Otwórz sprężynę śrubokrętem, jak pokazano poniżej. (patrz: rysunek 4.7)

Krok 3. Włóż odizolowany przewód ze skręconymi drutami do końca.

Końce drutu muszą być widoczne na sprężynie. Następnie zamknij sprężynę. (patrz: rysunek 4.8)

Krok 4. Włóż wkładkę do tulei i dokręć dławik kablowy z momentem skręcającym wynoszącym 2 Nm. (patrz: rysunek 4.9)

Krok 5. Dopasuj złącza do portów akumulatora na spodzie falownika, zachowując prawidłową biegunowość, aż usłyszysz dźwięk "kliknięcia". (patrz:rysunek 4.10)

clickt	
Rysunek 4.8	

4.5 Montaż złącza AC

Istnieją dwa zaciski AC i etapy montażu dla obu są takie same.

Wyjmij części złącza AC z opakowania.

1. Upewnij się, że używasz kabla o odpowiednich specyfikacjach, jak pokazano na poniższej ilustracji.

Opis	Wartość liczbowa		
Średnica drutu	13~25 mm		
Przekrój poprzeczny	6~13mm ² (10-6AWG)		
Długość ekspozycji	13 mm		
Tabela 4 1			

Oznaczenia złącza prądu zmiennego "L1", "L2", "L3", "N" i "PE ⊕" dotyczą odpowiednich portów przyłączeniowych (patrz: rysunek 4.13). Trzy przewody pod napięciem są podłączone odpowiednio do zacisków "L1", "L2" i "L3"; przewód uziemiający łączy się z "PE ⊕ "; przewód neutralny łączy się z zaciskiem "N":

A) Zdejmij izolację kabla na długości 70 mm, aby długość odsłoniętego złącza z rdzeniem miedzianym wynosiła 13 mm. Przeprowadź kabel przez nakrętkę i tuleję gniazda, włóż odpowiednie zaciski i dokręć kluczem imbusowym (patrz: rysunek 4.14). Moment obrotowy wynosi 1,5-2,5 Nm.

na pole obwiedzione kropkowaną linią, patrz: rysunek 4.14). Śruba imbusowa może łatwo wypaść. Nie wykręcaj jej całkowicie.

B) Załóż plastikową oprawę (element pomocniczy do instalacji) na element z gniazdem, przykręcić element przejściowy do elementu z gniazdem, a następnie dokręcić nakrętkę obrotową momentem 2,5-4 Nm (patrz: rysunek 4.15).

C) Podłącz złącze prądu przemiennego do falownika, a następnie dokręć złącze prądu przemiennego zgodnie z ruchem wskazówek zegara aż usłyszysz delikatne kliknięcie, wskazujące na pomyślne połączenie. (patrz rysunek 4.16)

4.6 Instalacja miernika

Falownik RHI-(5-10)K-HVES-5G firmy Solis zintegrowana funkcja kontroli mocy eksportu, funkcja ta wymaga podłączenia trójfazowego miernika mocy do sterowania mocą eksportową.

4.6.1 Instalacja miernika trójfazowego

Postępuj zgodnie z poniższym rysunkiem, aby zainstalować 3-fazowy miernik mocy i CT.

4.7 Zespół kabla komunikacyjnego

Falownik z serii RHI wykorzystuje kabel RS485 do komunikacji z miernikiem oraz CAN do komunikacji z BMS akumulatora. Poniższy rysunek przedstawia montaż kabli komunikacyjnych RS485 / CAN.

UWAGA:

Kabel CAN umożliwia komunikację pomiędzy falownikiem a akumulatorem litowojonowym firm Pylontech.

Przed instalacją sprawdź zgodność z najnowszym modelem.

Procedura podłaczania kabla CAN:

- 1. Wyjmij kabel CAN (oznaczenie terminala "CAN" na jednym końcu i "do licznika" na drugim końcu).
- 2. Odkręć nakrętkę obrotową z portu CAN.
- 3. Włóż terminal RJ45 z etykietą CAN do portu CAN, a następnie dokręć nakrętkę.
- 4. Podłącz drugi koniec do akumulatora.

UWAGA:

W przypadku kabla CAN do komunikacji używane są pin 4 (niebieski) i pin 5 (biało-niebieski).

Procedura podłączenia kabla RS485:

1. Wyjmij kabel RS485 (oznaczenie terminala "RS485" na jednym końcu i "do akumulatora" na drugim końcu).

- 2. Odkręć nakrętkę obrotową z portu RS485.
- 3. Włóż dwubiegunowy terminal z etykietą RS485 do portu RS485, a następnie dokręć nakrętkę.
- 4. Podłącz drugi koniec do miernika.

4.8 Połączenie interfejsu logicznego (tylko dla Wielkiej Brytanii)

Interfejs logiczny jest wymagany przez standardy G98 i G99 i może być obsługiwany za pomocą prostego przełącznika lub stycznika. Gdy przełącznik ten jest zamknięty, falownik może pracować normalnie. Gdy przełącznik zostanie otwarty, falownik w ciąqu 5 sekund zmniejszy moc wyjściowa do zera. Do podłączenia interfejsu logicznego służą piny 5 i 6 i złącze RJ45.

Wykonaj poniższe czynności, aby zamontować złącze DRM RJ45.

1. Połącz kabel sieciowy z komunikacyjnym zaciskiem złącza RJ45.

2. Za pomocą szczypców do usuwania izolacji z przewodów usuń warstwę izolacyjną z kabla komunikacyjnego. Zgodnie ze standardową sekwencją pokazaną na rysunku 4.21 podłącz przewód do wtyczki RJ-45, a następnie, aby zapewnić szczelne połączenie, użyj zagniatarki do instalacji elektrycznych.

Rysunek 4.21 Zdejmij warstwę izolacyjną i podłącz przewód do wtyczki 3 RJ-

3.Podłącz RJ45 do DRM (interfejs logiczny).

UWAGA:

Aby skorzystać z tej funkcji, skontaktuj się z producentem.

4.Instalacja

4.9 Dioda LED wskazuje

Na falowniku RHI znajdują się trzy wskaźniki LED (czerwony, zielony i pomarańczowy), które wskazują stan pracy falownika.

5.1 Menu główne

W menu głównym znajdują się cztery podmenu (patrz Rysunek 5.1):

- 1. Informacja
- 2. Ustawienia
- 3. Informacje zaawansowane.
- 4. Ustawienia zaawansowane

5.2 Informacja

W sekcji Informacje można przeglądać dane eksploatacyjne i informacje. Podsekcje obejmują:

1.Informacje ogólne 2.Informacje o systemie 3.Zapisy energetyczne 4.Zapisy energii PV 5.Informacje BMS 6.Informacje o mierniku

Na poniższych rysunkach przedstawiono przykładowe ekrany.

Powyższe wartości podano w celach informacyjnych.

Wyświetlacz	Czas trwania	Opis	
Falownik SN : FFFFFFFFFFFFFFF	10 s	Wyświetla numer seryjny falownika.	
Urządzenie: Oczekiwanie	10 s	Wyświetla stan urządzenia.	
Akumulator: Oczekiwanie	10 s	Wyświetla stan akumulatora.	
Kopia zapasowa: Oczekiwanie	10 s	Wyświetla stan obwodu rezerwowego.	
Sieć: oczekiwanie	10 s	Wyświetla stan sieci AC.	
DRMNO.: 08	10 s	Wyświetla tryb pracy DRM (dotyczy Wielkiej Brytanii/Australii)	
Model.: 00	10 s	Pokazuj e numer m odelu urz ądzenia.	
SoftVer.: 000000	10 s	Wyświetla wersję oprogramowania sprzętowego urządzenia.	
Rysunek 5.2 Informacje ogólne			

trwania	Opis
10 s	V_DC1: Wyświetla wartość napięcia na wejściu 01. I_DC1: Wyświetla wartość natężenia prądu na wejściu 01.
10 s	V_D C2: Wyświetla wartość napięcia na wejściu 02. I_DC2: Wyświetla wartość prądu na wejściu 02.
10 s	V_A: Wyświetla wartość napięcia sieci. I_A: Wyświetla wartość prądu sieci.
10 s	V_B: Wyświetla wartość napięcia sieci. I_B: Wyświetla wartość prądu sieci.
10 s	V_C: Wyświetla wartość napięcia sieci. I_C: Wyświetla wartość prądu sieci.
10 s	Wyświetla wartość częstotliwości sieci.
10 s	Akumulator V: Pokazuje napięcie akumulatora. Akumulator I: Pokazuje prąd akumulator.
10 s	Kopia zapasowa V: Pokazuje napięcie portu zapasowego Zapasowa P: Pokazuje moc portu zapasowego.
10 s	Obciążenie P: Pokazuje moc ładowania akumulatora. Rozładowanie P: Pokazuje moc rozładowywania akumulatora.
	trwania 10 s 10 s 10 s 10 s 10 s 10 s 10 s 10 s

Wyświetla całkowitą energię naładowania akumulatora.
Wyświetla aktualny stan naładowania baterii.
Wyświetla wczorajszy stan naładowania baterii.

Wyświetlacz	Czas trwania	Opis	
PV E ogółem: 0000000 kWh	10 s	Pokazuje całkowitą generację PV.	
PV E dzisiaj: 000,0 kWh	10 s	Pokazuje dzisiejszą generację PV.	
PV E ostatni dzień: 000,0 kWh	10 s	Pokazuje wczorajszą generację PV.	
PV E ten miesiąc: 0000000 kWh	10 s	Pokazuje generację PV w tym miesiącu.	
PV E ostatni miesiąc: 0000000kWh	10 s	Pokazuje generację PV w ostatnim miesiącu.	
PV E ten rok: 0000000 kWh	10 s	Pokazuje generację PV w tym roku.	
PV E w ostatnim roku: 0000000kWh	10 s	Pokazuje generację PV w ostatnim roku.	
Rysunek 5.5 Zapisy energii PV			

0243	Opis
trwania	
10 s	Akumulator V: Pokazuje napięcie akumulatora (z BMS). Akumulator I: Pokazuje prąd akumulatora (z BMS).
10 s	ChargelLmt: Pokazuje ograniczenie prądu ładowania akumulatora (z BMS). DischargelLmt: Pokazuje ograniczenie prądu rozładowania akumulatora (z BMS).
10 s	ChargeVLmt: Pokazuje limit napięcia ładowania akumulatora (z BMS). DischargeVLmt: Pokazuje limit napięcia rozładowania akumulatora (z BMS).
10 s	Wartość SOC: Pokazuje stan naładowania akumulatora. Wartość SOH: Pokazuje stan akumulatora.
10 s	Pokazuje stan komunikacji BMS akumulatora.
	trwania 10 s 10 s 10 s 10 s 10 s 10 s

Wyświet lacz	Czas trwania	Opis	
Moc fazy B + 000000 W	10 s	Pokazuje moc fazy A na mierniku.	
Moc fazy B: + 000000 W	10 s	Pokazuje moc fazy B na mierniku.	
Moc fazy C: + 000000 W	10 s	Pokazuje moc fazy C na mierniku.	
Licznik energii: 0000000,00 kWh	10 s	Pokazuje zapis energii na liczniku.	
Energia wyjściowa: 0000000,00 kWh	10 s	Pokazuje zapis energii zapisanej na liczniku.	
Energia wejściowa: 0000000,00 kWh	10 s	Pokazuje zapis energii importowanej na liczniku.	
Stan licznika: błąd RS485	10 s	Pokazuje stan komunikacji licznika.	
Rysunek 5.7 Informacje o liczniku			

5.3 Ustawienia

Po wybraniu menu Ustawienia wyświetlane są następujące menu podrzędne: 1. Ustaw datę i godzinę 2. Ustawienie odrzenu

2.Ustawianie adresu

5.3.1 Ustaw datę i godzinę

Ta funkcja umożliwia ustawienie godziny i daty. Po wybraniu tej funkcji, na wyświetlaczu LCD pojawi się ekran pokazany na rysunku 5.8.

Rysunek 5.8 Ustawianie czasu

Aby ustawić godzinę i datę, naciskaj klawisze W GÓRĘ/W DÓŁ. Aby przejść od jednej cyfry do kolejnej, naciśnij klawisz ENTER (od lewej strony do prawej). Naciśnij klawisz ESC, aby zapisać ustawienia i powrócić do poprzedniego menu.

5.3.2 Ustawianie adresu

Ta funkcja służy do ustawienia adresu, gdy falowniki muti są podłączone do trzech monitorówMożna przypisać numer adresu w zakresie od "01" do "99". Domyślny adres to "01".

Aby ustawić adres, naciśnij przycisk W GÓRĘ/W DÓŁ. Aby zapisać ustawienia, naciśnij klawisz ENTER. Aby anulować zmianę i powrócić do poprzedniego menu, naciśnij klawisz ESC.

5.4 Zaawansowane informacje

UWAGA:

Dostęp do tego obszaru mają wyłącznie w pełni wykwalifikowani i upoważnieni technicy. Wejdź do menu "Informacje zaawansowane". (Hasło "0010").

Wybierz z menu głównego opcję "Informacje zaawansowane". Na wyświetlaczu pojawi się wymaganie podania hasła, jak poniżej:

Rysunek 5.10 Wprowadzanie hasła

Po wprowadzeniu poprawnego hasła Menu główne przedstawi na wyświetlaczu następujące informacje.

1. Komunikat alarmowy 2.Komunikat ostrzegawczy 2. Stan pracy 3.Dane dotyczące komunikacji 4. Profil plonu

Wyświetlacz można przewijać ręcznie, naciskając klawisze W GÓRĘ /W DÓŁ. Naciśnięcie klawisza ENTER udostępnia menu podrzędne. Naciśnij klawisz ESC, aby powrócić do menu głównego.

5.4.1 Komunikat alarmowy

Na wyświetlaczu pojawi się 100 ostatnich komunikatów alarmowych. Ekrany można przewijać ręcznie, naciskając klawisze W GÓRĘ/W DÓŁ. Naciśnij klawisz ESC, aby powrócić do poprzedniego menu.

> Alm000: MET_Comm-FAIL T: 00-00 00:00 D:0000

Rysunek 5.11 Komunikat alarmowy

5.4.2 Komunikat ostrzegawczy

Na wyświetlaczu pojawi się 100 ostatnich komunikatów ostrzegawczych.

Ekrany można przewijać ręcznie, naciskając klawisze W GÓRĘ/W DÓŁ. Naciśnij klawisz ESC, aby powrócić do poprzedniego menu.

5.4.3 Stan pracy

Ta funkcja przeznaczona jest dla osoby zajmującej się konserwacją i służy do przekazywania komunikatów o przebiegu pracy, takich jak temperatura wewnątrz, numer normy itp. (powyższe wartości podano w celach informacyjnych)

_ Stan ogólny Stan zaawansowany Rysunek 5.13 Stan pracy				
Wyświet lacz	Czas trwania	Opis		
Napięcie na szynie DC: 000,0 V	10 s	Pokazuje napięcie szyny DC.		
Współczynnik mocy: +00,0	10 s	Pokazuje współczynnik mocy falownika.		
Limit mocy%: 000%	10 s	Pokazuje procentową moc wyjściową falownika.		
Temperatura falownika: + 000,0°C	10 s	Pokazuje wewnętrzną temperaturę IGBT falownika.		
Sieć standardowa:	10 s	Pokazuje aktualny efektywny standard sieci.		
Stan Flash: 00000000	10 s	Zarezerwowane dla techników Solis		
Rysunek 5.14 Stan ogólny				

F

Stan zaawansowany jest zarezerwowany dla techników Solis.

5.4.4 Dane dotyczące komunikacji

Na wyświetlaczu przedstawione są wewnętrzne dane falownika, przeznaczone wyłącznie dla techników serwisowych.

5.4.5 Profil plonu

Profil wydajności obejmuje: akumulator energii, sieć energetyczną i rezerwę energii. W tej sekcji można łatwo przeglądać wszystkie historyczne zapisy dotyczące produkcji energii.

 Akumulator energii Sieć energ.
Rysunek 5.16 Dane komunikacy

5.5 Ustawienia zaawansowane

UWAGA:

P

Dostęp do tego obszaru mają wyłącznie w pełni wykwalifikowani i upoważnieni technicy. Wejdź do menu "Ustawienia zaawansowane" (hasło "0010").

Wybierz "Ustawienia zaawansowane" z menu głównego. Na wyświetlaczu pojawi się wymaganie podania hasła, jak poniżej:

> Wprowadź hasło XXXX

Rysunek 5.17 Wprowadzanie hasła

Wybierz Ustawienia zaawansowane z menu głównego, aby uzyskać dostęp do następujących opcji: 1. Wybór standardu 2. Przełączniki sieciowe 3. Kontrola akumulatora 4. Kontrola kopii zapasowych 5. Ustawienie magazynowania energii 6. STD. Ustawienia trybu 7. Aktualizacja oprogramowania 8. Ustawienie eksportu mocy 9. Reset hasła 10. Ponowne uruchamianie HMI 11. Autotest CEI 0-21 12. Ustawienie kompensacji

5.5.1 Wvbór standardu

Ta funkcja służy do wyboru standardu odniesienia sieci.

AS4777-15, NRS097, User-Def, itp.).

Aby potwierdzić ustawienie, naciśnij klawisz ENTER.

Aby anulować zmiany i powrócić do poprzedniego menu, naciśnij klawisz ESC.

UWAGA

W różnych krajach należy zastosować odpowiednie ustawienia standardów sieci w zależności od lokalnych wymagań. W przypadku wątpliwości zwróć się o szczegółowe informacje do techników serwisu Solis.

5.5.2 Przełączniki sieciowe

Ta funkcja służy do uruchamiania lub zatrzymywania generowania falownika.

Ekrany można przewijać ręcznie, naciskając klawisze W GÓRĘ/W DÓŁ. Aby zapisać ustawienie, naciśnij klawisz ENTER. Naciśnij klawisz ESC, aby powrócić do poprzedniego menu.

5.5.3 Kontrola akumulatora

Ta sekcja służy do wyboru odpowiedniego akumulatora i ustawienia funkcji wybudzania akumulatora.

-Wybór akumulatora

Rysunek 5.20 Kontrola akumulatora

5.5.3.1 Wybór akumulatora

Ten produkt jest kompatybilny z następującymi modułami akumulatorów:

Marka	Model	Ustawienie
Pylontech	H48074	Wybierz "PYLON"

Jeśli falownik hybrydowy nie jest podłączony do akumulatora, wybierz opcję "Brak akumulatora", aby uniknąć alarmów. Dla powyższych kompatybilnych modułów akumulatora należy określić tylko dwa parametry:

* OverDischg SOC (10%~40%, domyślnie 20%)

- Falownik nie rozładuje akumulatora po osiągnięciu OverDischg SOC. Samorozładowanie akumulatora jest nieuniknione, SOC może spaść poniżej limitu, jeśli akumulator nie może być ładowany przez długi czas.

5.5.4 Kontrola kopii zapasowych

Ta sekcja służy do ustawiania konfiguracji portu zapasowego.

5.5.4.1 Kopia zapasowa WŁ./WYŁ

Ten przełącznik może włączać/wyłączać połączenie elektryczne portu zapasowego.

5.5.4.2 Ustawienia kopii zapasowych

W tej sekcji przedstawiono parametry portu zapasowego.

5.5.5 Ustawienie magazynowania energii

W tej sekcji dostępne są dwa ustawienia: Wybór licznika i Wybór trybu przechowywania.

5.5.5.1 Wybór licznika

To ustawienie służy do wyboru typu licznika w oparciu o rzeczywistą konfigurację.

5.5.5.2 Wybór trybu magazynowania

Dostępne są dwa tryby opcjonalne:

1. Czas ładowania 2. Tryb poza siecią

Tryb domyślny nosi nazwę "AUTO" (który nie jest wyświetlany i nie można go wybrać). Logika trybu "AUTO" to: Przechowywanie nadmiaru energii PV w akumulatorze, a następnie używanie go do obsługi obciążeń zamiast eksportowania do sieci. (Maksymalizacja wskaźnika zużycia własnego systemu). Aby powrócić do trybu domyślnego, po prostu ustaw wszystkie inne tryby jako WYŁĄCZONE.

Tryb: ładowanie w czasie

Rysunek 5.28 Wybór trybu przechowywania

Tryb czasu ładowania:

"Optymalny zysk" to przełącznik służący do włączania/wyłączania trybu czasu ładowania. Klient może określić prąd ładowania/rozładowania, a także czas ładowania/rozładowania akumulatora.

Wyświetlacz	Czas trwania	Opis
Czas użytkowania: Praca	10 s	Włącz/wyłącz tryb
Limit naładowania: 010,0A	10 s	Ustaw limit prądu ładowania
Limit rozładowania: 010,0A	10 s	Ustaw limit prądu rozładowania
Czas ładowania: 00:00 - 00:00	10 s	Określ czas ładowania
Czas rozładowania: 00:00 - 00:00	10 s	Określ czas rozładowania
Łączny czas ładowania: 00:00	10 s	Określ całkowity czas ładowania
Rysunek 5.29 Tryb ładowania w czasie		

Tryb poza siecią:

Włącz tryb dla systemów poza siecią. Port sieci AC musi być fizycznie odłączony.

Tryb: WŁĄCZONY

Rysunek 5.30 Tryb poza siecią

5.5.6 Ustawienia trybu STD

Te ustawienia są zarezerwowane dla personelu konserwacyjnego i techników. Nie zmieniaj niczego bez instrukcji.

Wybór "Tryb STD. Ustawienia" powoduje wyświetlenie przedstawionego poniżej menu podrzędnego:

1. Ustawienie trybu pracy 2. Limit wskaźnika mocy 3. Częstotliwość Ustawienie obniżenia wartości znamionowych

4. 10-minutowe ustawienie napięcia 5. 3 Ustawienia Tau 6. Ustawienia początkowe

5.5.7 Aktualizacja oprogramowania

Aktualizacja oprogramowania obejmuje HMI i DSP. W tym ustawieniu można sprawdzić odpowiednią wersję oprogramowania sprzętowego. Naciśnij "ENT", aby przejść do trybu aktualizacji.

Rysunek 5.32 Aktualizacja oprogramowania

5.5.8 Ustawienie eksportu mocy

Ta funkcja służy do ustawiania kontroli mocy eksportu.

1.EPM WŁ/WYŁ 2. Moc przepływu wstecznego 3.Włączanie/wyłączanie funkcji zabezpieczenia przed awarią

Ustawienia 2 i 3 są ważne tylko wtedy, gdy ustawienie 1 jest ustawione na "WŁ".

5.5.8.1 EPM WŁ/WYŁ

Włącz/wyłącz funkcję.

5.5.8.2 Moc przepływu wstecznego

Określ dopuszczalną moc wstecznego zasilania. (Eksport systemu do sieci)

Moc przepływu wstecznego +0000W

Rysunek 5.34 Moc przepływu wstecznego

5.5.8.3 Włączanie/wyłączanie funkcji zabezpieczenia przed awarią

Gdy ta funkcja zabezpieczenia przed awarią jest WŁĄCZONA, falownik wyłączy się po utracie komunikacji z licznikiem w przypadku przekroczenia limitu mocy wstecznej.

5.5.9 Resetowanie hasła

Reset hasła: W tym menu użytkownik może zresetować hasło falownika, ale hasło administratora pozostaje zawsze ważne.

5.5.10 Ponowne uruchamianie HMI

Ta funkcja służy do ponownego uruchomienia ekranu LCD.

5.5.11 Autotest CEI 0-21

Ta funkcja jest dostępna tylko po wybraniu włoskiej normy CEI021.

5.5.12 Ustawienie kompensacji

Ta funkcja służy do skalibrowania energii wyjściowej i napięcia wyjściowego falownika. Uwzględniono dwie sekcje: parametr mocy i parametr napięcia.

6. Uruchomienie

6.1 Przygotowanie do uruchomienia

- Upewnij się, że wszystkie urządzenia są dostępne do obsługi, konserwacji i serwisu. Sprawdź i
- potwierdź, że falownik jest solidnie zamontowany.
- Przestrzeń wentylacyjna jest wystarczająca dla jednego falownika lub wielu
- falowników. Nic nie pozostaje na górze falownika lub modułu akumulatora.
- Falownik i akcesoria są prawidłowo podłączone.
- Kable są poprowadzone w bezpiecznym miejscu lub są zabezpieczone przed
- uszkodzeniami mechanicznymi. Znaki i etykiety ostrzegawcze są odpowiednio przymocowane i trwałe.

6.2 Procedura rozruchu

Jeśli wszystkie wymienione powyżej pozycje spełniają wymagania, należy postępować w następujący sposób, aby uruchomić falownik po raz pierwszy.

6.2.1 Włącz zasilanie awaryjne AC i sieć AC.

6.2.2 Postępuj zgodnie z ilustracją poniżej, aby wybrać standard sieci.

- 6.2.3 Aby skonfigurować parametry, patrz "Część 5".
- 6.2.4 Włącz rozłącznik prądu stałego między falownikiem a akumulatorem.
- 6.2.5 (Opcjonalnie) Jeśli akumulator jest wyposażony w akumulator litowojonowy Pylon lub akumulator, ręcznie włącz przełącznik na akumulatorze.
- 6.2.6 Przekaźnik będzie wydawał dźwięki "klikania", a automatyczne zadziałanie zajmie chwilę.
- 6.2.7 System będzie działał poprawnie.

Falownik Solis serii RHI nie wymaga regularnej konserwacji. Jednak czyszczenie radiatora pomoże falownikowi rozproszyć ciepło i wydłuży żywotność falownika. Brud na falowniku można wyczyścić miękką szczotka.

PRZESTROGA:

Nie dotykaj powierzchni pracującego falownika. Niektóre części mogą być gorące i spowodować oparzenia. Wyłącz falownik (patrz rozdział 6.2) i pozwól mu ostygnąć, zanim przystąpisz do jego konserwacji lub czyszczenia.

Wyświetlacz LCD i diody LED stanu można czyścić ściereczką, jeśli nie są dobrze widoczne.

a:

Do czyszczenia falownika nigdy nie używaj rozpuszczalników, materiałów ściernych ani żrących materiałów.

Falownik zaprojektowano zgodnie z międzynarodowymi standardami dotyczącymi sieci energetycznych oraz wymogami bezpieczeństwa i kompatybilności elektromagnetycznej.

Przed dostarczeniem do klienta falownik został poddany testom w celu zapewnienia jego optymalnego i niezawodnego działania.

W przypadku awarii na wyświetlaczu LCD pojawi się komunikat alarmowy. Falownik może wówczas przestać zasilać sieć. Opisy awarii i odpowiadające im komunikaty alarmowe wymienione są w tabeli 7.1:

7. Rozwiązywanie problemów

Gdy wystąpią usterki, stan "Usterka" zostanie wyświetlony na ekranie głównym. Wykonaj poniższe czynności, aby sprawdzić, jaki błąd wystąpił.

Kroki: Enter \rightarrow W dół \rightarrow Zaawansowane informacje \rightarrow Enter \rightarrow Komunikat alarmu.

Krok 1: Naciśnij ENTER.

Krok 2: Naciśnij przycisk W DÓŁ, aby wybrać opcję Informacje zaawansowane, a następnie naciśnij klawisz ENTER.

Krok 3: Naciśnij przycisk W DÓŁ, aby wybrać komunikat alarmowy, a następnie naciśnij ENTER.

Komunikat alarmowy	Opis usterki	Rozwiązanie	
AWARIA-ŁUKU	Wykryto ARC w obwodzie prądu stałego	 Sprawdź, czy w połączeniu PV występuje łuk i zrestartuj falownik. 	
AFCI sprawdzanie BŁĄD	Błąd autotestu modułu AFCI	 Uruchom ponownie falownik lub skontaktuj się z instalatorem. 	
DCinj-FAULT	Wysoki prąd wtrysku prądu stałego	 Uruchom ponownie falownik lub skontaktuj się z instalatorem. 	
DSP-B-FAULT	Awaria przełączania między głównym i podrzędnym zabezpieczeniem nadnapięciowym	1. Uruchom ponownie falownik lub skontaktuj się z instalatorem.	
DC-INTF	Nadmierny prąd wejścia DC	 Uruchom ponownie falownik. Zidentyfikuji usuh łańcuch prowadzący do uszkodzonego MPPT. Zmień płytę zasilania. 	
G-IMP	Wysoka impedancja sieci	 1.Użyj funkcji definiowanej przez użytkownika, aby skorygować wartość graniczną ochrony, jeśli zezwala na to firma dostarczająca energię elektryczną. 	
GRID-INTF01/02	Zakłócenia sieci	1. Uruchom ponownie falownik.	
IGBT-OV-I	Nadmierny prąd IGBT	2. Zmień płytę zasilania.	
IGFOL-F	Błąd śledzenia prądu w sieci	1. Uruchom ponownie falownik lub skontaktui sie z	
IG-AD	Próbkowanie prądu sieci nie powiodło się.	instalatorem.	
ILeak-PRO 01/02/03/04	Zabezpieczenie przed prądem upływowym	 Sprawdź połączenie AC i DC Sprawdź falownik wewnątrz połączenia kablowego. 	
INI-FAULT	Błąd systemu inicjalizacji	1. Uruchom ponownie falownik lub skontaktuj się z instalatorem.	
Na wyświetlaczu LCD wciąż widnieje komunikat o inicjalizacji	Nie można przeprowadzić rozruchu.	 Sprawdź, czy zamocowane są złącza na płycie głównej i na płycie zasilania. Sprawdź, czy zamocowane jest złącze DSP na płytce zasilania. 	
Brak akumulatora	Niepodłączony akumulator	 Sprawdź, czy przewód zasilania akumulatora jest podłączony prawidłowo, czy nie. Sprawdź, czy napięcie wyjściowe akumulatora jest prawidłowe, czy nie. 	
Brak zasilania	Brak zasilania falownika na wyświetlaczu LCD	 Sprawdź połączenia wejściowe PV. Sprawdź napięcie wejściowe DC (jednofazowe >120 V, trójfazowe >350 V). Sprawdź, czy PV +/- jest odwrócone 	
BRAK-SIECI	Brak napięcia w sieci	 Sprawdź połączenia i przełącznik sieci. Sprawdź napiecie sieci wewnatrz zacisku falownika. 	
OV-BUS	Napięcie prądu stałego	Sprawdź połączenie cewki falownika. Sprawdź połączenie sterownika.	

Komunikat alarmowy	Opis usterki	Rozwiązanie	
OV-DC01/02/03/04	Napięcie prądu stałego	1. Zmniejsz liczbę modułów w szeregu.	
OV-DCA-I	Nadmierny prąd wejścia DC	 Uruchom ponownie falownik. Zidentyfikuj i usuń łańcuch prowadzący do uszkodzonego MPPT. Zmień płytę zasilania. 	
OV-G-V01/02/03/04	Powyżej napięcia sieci	 Oporność kabla AC jest zbyt wysoka. Zmień na kabel sieciowy o większym polu powierzchni przekroju. Skoryguj wartość graniczną ochrony, jeśli zezwala na to firma dostarczająca energię 	
OV-G-I	Nadmierny prąd sieci	 Uruchom ponownie falownik. Zmień płytę zasilania. 	
OV-G-F01/02	Powyżej częstotliwości sieci	 Użyj funkcji definiowanej przez użytkownika, aby skorygować wartość graniczną ochrony, jeśli zezwala na to firma dostarczająca energię elektryczna. 	
OV-lgTr	Nadprądowe przejściowe po stronie AC		
OV-ILLC	Sprzętowe zabezpieczenie nadprądowe LLC	 Uruchom ponownie falownik. Naprawa w fabryce. 	
OV-VBackup	Usterka przepięcia obejścia		
OV-TEM	Nadmierna temperatura	 Sprawdź wentylację wokół falownika. Sprawdź, czy na falownik nie padają bezpośrednio promienie słoneczne w czasie upałów. 	
OV-Vbatt1	Wykrywanie przepięcia baterii	 Sprawdź, czy punkt ochrony przeciwprzepięciowej jest ustawiony prawidłowo, czy nie. Uruchom ponownie falownik. 	
OV-Vbatt-H	Usterka sprzętowa przepięcia akumulatora	 Sprawdź, czy w obwodzie podskakuje moc akumulatora. Uruchom ponownie falownik. 	
Przeciążenie	Błąd przeciążenia obejścia	 Sprawdź, czy obciążenie portu zapasowego przekracza 3 kW, czy nie. Zmniejsz obciążenie portu zapasowego, a następnie zrestartuj falownik. 	
PV ISO-PRO01/02	Ochrona izolacji panelu fotowoltaicznego	 Usuń wszystkie wejścia prądu stałego, ponownie podłącz i kolejno uruchamiaj falowniki. Ustal, który łańcuch powoduje awarię i sprawdź jego izolację. 	
RelayChk-FAIL	Kontrola przekaźnika nie powiodła się	1. Uruchom ponownie falownik lub skontaktuj się z instalatorem.	

7. Rozwiązywanie problemów

Komunikat alarmowy	Opis usterki	Rozwiązanie	
UN-BUS01/02	Pod napięciem szyny DC	 Sprawdź połączenie cewki falownika. Sprawdź połączenie sterownika. 	
UN-G-F01/02	Poniżej częstotliwości sieci	1. Użyj funkcji definiowanej przez użytkownika, aby	
UN-G-V01/02	Poniżej napięcia sieci	zezwala na to firma dostarczająca energię elektryczną.	
12 AWARIA zasilania	Uszkodzony zasilacz 12 V	 Uruchom ponownie falownik lub skontaktuj się z instalatorem. 	

Tabela 7.1 Komunikat o błędzie i opis

Jeśli falownik wyświetli jakikolwiek komunikat alarmowy wymieniony w Tabeli 7.1: wyłącz falownik i odczekaj 5 minut przed ponownym uruchomieniem. Jeżeli

awaria będzie się powtarzać, skontaktuj się z lokalnym dystrybutorem lub serwisem.

Zanim skontaktujesz się z nami, przygotuj wymienione poniżej informacje.

- 1. Numer seryjny falownika jednofazowego Solis;
- 2. Dystrybutor/sprzedawca falownika jednofazowego Solis (jeśli jest dostępny);
- 3. Data instalacji.
- Opis problemu (tzn. treść komunikatu alarmowego na wyświetlaczu LCD i stan diod LED. Pomocne będą również inne odczyty uzyskane z menu podrzędnego Informacje (patrz: rozdział 6.2));
- Konfigurację modułu systemu fotowoltaicznego (np. liczbę paneli, pojemność paneli, liczbę łańcuchów itd.);
- 6. Twoje dane kontaktowe.

8. Specyfikacje

Dane techniczne	RHI-3P5K-HVES-5G	RHI-3P6K-HVES-5G
Wejście DC (strona PV)		
Zalecana maks. moc PV	8000W	9600W
Maks. napięcie wejściowe	cie wejściowe 1000V	
Napięcie znamionowe	600	0 V
Napięcie rozruchowe	16	0V
Zakres napięcia MPPT	200-	850V
Zakres napięcia MPPT przy pełnym obciążeniu	255-850V	305-850V
Maks. natężenie wejściowe	13A	/13A
Maks. prąd zwarciowy	19,5A	/19,5A
Numer MPPT/maks. liczba łańcuchów wejściowych	2	/2
Akumulator		
Typ akumulatora	Litowo- jonowy	
Komunikacja	CAN/RS485	
Zakres napięcia akumulatora	160 - 600Vdc	
Maksymalna moc ładowania	5kW	6kW
Maksymalny prąd ładowania/rozładowania	25A	
Wyjście AC (po stronie sieci)		
Wyjściowa moc znamionowa	5kW	6kW
Maks. wyjściowa moc pozorna	5kVA	6kVA
Fazy eksploatacji	3/N/PE	
Znamionowe napięcie sieci	380V/	/400V
Zakres napięcia sieci	320-480V	
Ocena częstotliwości sieci	50/60 Hz	
Zakres częstotliwości sieciowej AC	45-55 Hz/ 55-65Hz	
Ocena prądu wyjściowego sieci	7,6A/7,2A	9,1A/8,7A
Maks. prąd wyjściowy	8,4A	10,0A
Współczynnik mocy	>0,99 (0,8 wyprzedza	jący - 0,8 opóźniony)
THDi	<2	2%

Wyjście AC (zapasowe)		
Wyjściowa moc znamionowa	5kW	6kW
Maks. wyjściowa moc pozorna	5kVA	6kVA
Maks. wyjściowa moc pozorna	10000VA, 60 sek.	12000 VA, 60 sek.
Czas przełączania rezerwowego	<40 ms	
Znamionowe napięcie wyjściowe	3/N/PE, 3	80V/400V
Częstotliwość znamionowa	50/	60 Hz
Znamionowy prąd wyjściowy	7,6A/7,2A	9,1A/8,7A
THDv (@obciążenie liniowe)	<2	%
Wydajność		
Maksymalna wydajność przetwarzania energii	98,	4%
Wydajność przetwarzania energii słonecznej w UE	97,7%	
Skuteczność MPPT	99,9%	
Wydajność ładowania/rozładowania akumulatora	97,5%	
Osłona		
Zabezpieczenie antywyspowe Tak		ak
Wykrywanie rezystancji izolacji	tancji izolacji Tak	
Jednostka monitorowania prądu resztkowego	owania prądu resztkowego Tak	
Ochrona przeciwprzepięciowa wyjścia	Tak	
Zabezpieczenie przeciwzwarciowe na wyjściu	Tak	
Ochrona przeciwprzepięciowa na wyjściu	Tak	
Przełącznik prądu stałego Tak		ak
Zabezpieczenie przed odwróconą polaryzacją DC	Tak	
chrona przed przepięciem PV Tak		ak
Zabezpieczenie przed odwróceniem biegunowości akumulatora	Та	ak

8. Specyfikacje

Dane ogólne		
Wymiary(Szer./Wys./Głęb.)	535*455*181mm	
Waga	25,1 kg	
Topologia	Beztransformatorowy	
Zużycie własne (w nocy)	<7 W	
Zakres temperatury pracy	-25℃~+60℃	
Wilgotność względna	0-100%	
Ochrona na wejściu	IP65	
Emisja hałasu	<30 dB (A)	
Koncepcja chłodzenia	Konwekcja naturalna	
Maksymalna wysokość robocza	4000 m	
Norma dot. podłączenia sieci	VDE-AR-N 4105, VDE V 0124, VDE V 0126-1-1, UTE C15-712-1, NRS 097-1-2, G98, G99, EN 50549-1/-2, RD 1699, UNE 206006, UNE 206007-1, CEI 0-21	
Standard bezpieczeństwa / EMC	IEC 62109-1/-2, EN 61000-6-2/-3	
Cechy produktu	·	
Podłączenie prądu stałego	Złącze MC4	
Podłączenie prądu przemiennego	Szybkozłączka	
Wyświetlacz	LCD, 2X20 Z	
Komunikacja	RS485, opcjonalnie: Wi-Fi, GPRS	
Gwarancja	5 lat (przedłużenie do 20 lat)	

Dane techniczne	RHI-3P8K-HVES-5G	RHI-3P10K-HVES-5G	
Wejście DC (strona PV)			
Zalecana maks. moc PV	12800W	16000W	
Maks. napięcie wejściowe	10	1000V	
Napięcie znamionowe	60	0 V	
Napięcie rozruchowe	16	V00	
Zakres napięcia MPPT	200-	850V	
Zakres napięcia MPPT przy pełnym obciążeniu	280-850V	250-850V	
Maks. natężenie wejściowe	26A/13A	26A/26A	
Maks. prąd zwarciowy	39A/19,5A	39A/39A	
Numer MPPT/maks. liczba łańcuchów wejściowych	2/3	2/4	
Akumulator	Akumulator		
Typ akumulatora	Litowo-		
Komunikacja	CAN/RS485		
Zakres napięcia akumulatora	160 - 600Vdc		
Maksymalna mocładowania	8kW	10 kW	
Maksymalny prąd ładowania/rozładowania	25A		
Wyjście AC (po stronie sieci)			
Wyjściowa moc znamionowa	8kW	10 kW	
Maks. wyjściowa moc pozorna	8kVA	10kVA	
Fazy eksploatacji	3/N/PE		
Znamionowe napięcie sieci	380V/400V		
Zakres napięcia sieci	320-480V		
Ocena częstotliwości sieci	50/60 Hz		
Zakres częstotliwości sieciowej AC	45-55 Hz/ 55-65Hz		
Ocena prądu wyjściowego sieci	12,2A/11,5A	15,2A/14,4A	
Maks. prąd wyjściowy	13,4A	16,7A	
Współczynnik mocy	>0,99 (0,8 wyprzedzający - 0,8 opóźniony)		
THDi	<	2%	

8. Specyfikacje

Wyjście AC (zapasowe)		
Wyjściowa moc znamionowa	8kW	10 kW
Maks. wyjściowa moc pozorna	8kVA	10kVA
Maks. wyjściowa moc pozorna	16000VA, 60 sek.	
Czas przełączania rezerwowego	<40 ms	
Znamionowe napięcie wyjściowe	3/N/PE, 38	80V/400V
Częstotliwość znamionowa	50/6	60 Hz
Znamionowy prąd wyjściowy	12,2A/11,5A	15,2A/14,4A
THDv (@obciążenie liniowe)	<2	%
Wydajność		
Maksymalna wydajność przetwarzania energii	98,4%	
Wydajność przetwarzania energii słonecznej w UE	97,7%	
Skuteczność MPPT	99,9%	
Wydajność ładowania/rozładowania akumulatora	97,5%	
Osłona		
Zabezpieczenie antywyspowe	Ta	ak
Wykrywanie rezystancji izolacji	Tak	
Jednostka monitorowania prądu resztkowego Tak		ak
Ochrona przeciwprzepięciowa wyjścia	Tak	
Zabezpieczenie przeciwzwarciowe na wyjściu	Tak	
Ochrona przeciwprzepięciowa na wyjściu	Tak	
Przełącznik prądu stałego	Tak	
Zabezpieczenie przed odwróconą polaryzacją DC	Tak	
Ochrona przed przepięciem PV	Tak	
Zabezpieczenie przed odwróceniem biegunowości	Tak	

Dane ogólne		
Dimensions(W/H/D)	535*455*181mm	
Waga	25,1 kg	
Topologia	Beztransformatorowy	
Zużycie własne (w nocy)	<7 W	
Zakres temperatury pracy	-25°C ~ +60°C	
Wilgotność względna	0-100%	
Ochrona na wejściu	IP65	
Emisja hałasu	<30 dB (A)	
Koncepcja chłodzenia	Konwekcja naturalna	
Maksymalna wysokość robocza	4000 m	
Norma dot. podłączenia sieci	VDE-AR-N 4105, VDE V 0124, VDE V 0126-1-1, UTE C15-712-1, NRS 097-1-2, G98, G99, EN 50549-1/-2, RD 1699, UNE 206006, UNE 206007-1, CEI 0-21	
Standard bezpieczeństwa / EMC	IEC 62109-1/-2, EN 61000-6-2/-3	
Cechy produktu		
Podłączenie prądu stałego	Złącze MC4	
Podłączenie prądu przemiennego	Szybkozłączka	
Wyświetlacz	LCD, 2X20 Z	
Komunikacja	RS485, opcjonalnie: Wi-Fi, GPRS	
Gwarancja	5 lat (przedłużenie do 20 lat)	